
8 The Delphi Magazine Issue 61

Streaming Delphi Components
Using Delphi’s component streaming to create screensavers
by Jason Southwell

As you all know, Delphi is a
rich and powerful develop-

ment system. However, sometimes
its RAD features can allow us to
overlook some of its most powerful
fundamental classes and func-
tions. Classes like TStreams have
always been around, but enhance-
ments throughout each Delphi ver-
sion have made these old
dependable objects quite easy to
use. The methods I will investigate
in this article allow us to take
advantage of Delphi component
streaming.

Ever since I started to under-
stand the benefits of component
streaming, I find TStreams popping
up more and more in my applica-
tions. In this article, we will be
discussing a few methods, used
internally by Delphi, that are also
extremely useful for a variety of
applications you may be
developing.

It is true that streams are useful
for data manipulation at the tiniest
detail, but they also provide some
higher-level functions to make data
access and manipulation simple.
Some of these higher-level func-
tions allow us to do component
streaming. For a basic introduc-
tion, component streaming is the
process of copying a TComponent or
descendant into a stream. The data
in the stream is in a format very
similar to a Delphi .DFM file. In fact,
if you wrote a component stream
to a file and assigned it a .DFM
extension, you could open that file
in Delphi and view it as though it
were a form.

Once a component has been
copied to a stream, you have many
options for what to do with it. As
we’ve already mentioned you can
write the stream to a file; however,
that is only the beginning. You
could also send the component to
another application via a memory-
mapped file or TCP/IP socket. You
could even embed the component

into an EXE file for distribution. For
the purposes of this article, we will
embed our component stream into
another EXE file in order to create
distributable and customizable
screensavers.

TStream: The Basics
While TStreams can be very useful
tools, implementing them can be a
daunting task for the beginning
developer. I will assume that you
know some stream basics, such as
creation, destruction and simple
navigation. If you need a good tuto-
rial on the basics of TStreams, check
out this article at the Project Jedi
site: ftp://delphi-jedi.org/voyager/
Strmhlp.zip.

We will make use of two methods
introduced by TStream for the
purposes of component streaming:

function ReadComponent(
Instance: TComponent):
TComponent

procedure WriteComponent(
Instance: TComponent)

There are also two sister methods
for writing in a format compatible
with Windows resource files:

function ReadComponentRes(
Instance: TComponent):
TComponent

procedure WriteComponentRes(
const ResName: string;
Instance: TComponent)

Either will work for component
streaming in general, but using the
write method from one set means
that you will have to use the read
method from the same set. It’s usu-
ally a good idea to use ReadCompo-
nent and WriteComponent instead of
the resource versions, unless you
need to store the streams for
resource file compatibility.

Regardless, when well thought
out and with an object oriented
design, these streaming methods

can be a ‘silver bullet’ for many
programming challenges. Let’s
begin using these functions to
create an application that
generates windows screensavers.

The Task At Hand
To begin, I’ll explain the basic
premise of the code to follow. First,
we will create a screensaver appli-
cation that, when launched, will
simply display a slideshow of
pictures.

This seems simple enough,
especially if you know the basics of
how to create a windows screen-
saver. However, we want to do a
little more. What if you wanted a
way to create multiple screen-
savers, each with a different set of
images in the slideshow. These
screensavers could be sold, or
given away as software packages.
It would make sense, then, to
create a screensaver shell on
which you can superimpose a list
of images every time you want to
create a screensaver. Ideally, you
would like to distribute these
screensavers without having to
recompile any code or manually
rewrite the screensaver for the
new images.

To accomplish this we need to
come up with a clever way to
retrieve the graphics to display.
There are actually many ways you
could do this, but only a few that
would allow you to generate a new
screensaver without a recompile.
Well, since the topic of this article
is practical uses for component
streaming, let’s accomplish our
task via component streams.

The solution to our situation
involves creating two projects.
The first will be the actual
screensaver application. This is
the program that will eventually be
placed in the Windows directory
and selected via the Control Panel
Display options. The second appli-
cation will be a program that

10 The Delphi Magazine Issue 61

embeds the images into that
screensaver. The idea is that when
Windows launches the screen-
saver, it will load the images from
within itself and display them in a
slideshow.

So Let’s Do It
In writing this article I am faced
with a chicken and egg dilemma.
You see, I can’t really show you the
screensaver application without
showing you how those images are
embedded into the screensaver,
because the screensaver is the
images embedded into the
screensaver. I also can’t show you
the embedding application with-
out having the compiled screen-
saver in which to embed them.
Let’s just pick a spot to start and
dig right into it.

To create the basic screensaver,
I borrowed code from the docu-
ment TI4534D at community.
borland.com. This describes how
to write a basic 32-bit screensaver.
Although the screensaver it walks
you though is a bit more complex
than what we are doing, it provides
a fine baseline for our project.
Since I started with the TI screen-
saver, the code you see in my
screensaver will look very similar
to it, however there are major dif-
ferences in the actual display of the
screensaver and preview win-
dows.

Compiling this project will
create a screensaver.dat file. We
compile to a .dat file because this
program should never be directly
executed. Normally a screensaver
is simply an EXE file renamed with
the .scr extension. In our case, we
will rename the .dat extension to
.scr only after it has been embed-
ded with graphics to display.

Since we are using component
streaming to embed our images we
are afforded the luxury of bowing
to our ‘object prowess’ and can
encapsulate most of our
screensaver functionality into the
components themselves. If you
look at the code in Listings 1 and 2
you will see the basic components
we will use to perform that
encapsulation. TSSImage is the base
class for our components. The
intention is to have a base con-
tainer class for the image that pro-
vides basic functionality for
copying the image to the screen.
TSSTextImage is a class inherited
from TSSImage which builds upon
the functionally of TSSImage to dis-
play the given text in the center of
the screen on top of the image.
Additional components could be
created to do more advanced
operations such as transitions, 3D
effects, or anything else you could
think of. For the purposes of this
example however, we will only
implement these two classes.

In addition to these two compo-
nents, we will also create a helper
component called TSSFileImage-
Locations. When we get to the
point of embedding our images
into our screensaver, we will need
to know where each of these image

components begin. This TSSFile-
ImageLocations component will
store a list of file locations pointing
to each of our images. In Listing 3
you will see the code for this com-
ponent. If we decided not to imple-
ment this component, we could
still get the images by knowing the
starting location and cycling
through until the end of the file,
but I decided not to do this as it can
load down the memory with
unused data and cause a speed
problem when progressing from
slide to slide. In this case, it is
simply better to keep the image
location list at hand.

We had to implement the
TSSFileImageLocations component
rather than using a TList or
TStringList as those classes are
not inherited from TComponent and
therefore would not stream.

Embedding The Data
Now that we know the basic
structure of how the screensaver
will function, let’s get into the
embedding process. The second
application, Maker, will create a
.scr file by combining our
screensaver.dat file with a series of
embedded TSSImage components.

TSSImage = class(TComponent)
private
FFilename: string;
FPicture: TPicture;
procedure SetPicture(const Value: TPicture);

public
constructor Create(AOwner : TComponent); override;
destructor Destroy; override;
procedure Execute(ToPicture : TPicture); virtual;

published
property Picture : TPicture read FPicture write SetPicture;
property Filename : string read FFilename write FFilename;

end;
TSSTextImage = class(TSSImage)
private
FText: String;

public
procedure Execute(ToPicture : TPicture); override;

published
property Text : String read FText write FText;

end;

procedure TSSImage.Execute(ToPicture : TPicture);
begin
ToPicture.Assign(FPicture);

end;
procedure TSSTextImage.Execute(ToPicture: TPicture);
var
tmpBitmap : TBitmap;
x, y : integer;
s : TSize;

begin
inherited Execute(ToPicture);
tmpBitmap := TBitmap.Create;
try
tmpBitmap.Width := ToPicture.Width;
tmpBitmap.Height := ToPicture.Height;

tmpBitmap.Canvas.Draw(0,0,ToPicture.Graphic);
tmpBitmap.Canvas.Brush.Style := bsClear;
tmpBitmap.Canvas.Font.Size := 32;
tmpBitmap.Canvas.Font.Color := clWHite;
tmpBitmap.Canvas.Font.Name := 'Arial';
s := tmpBitmap.Canvas.TextExtent(FText);
x := (ToPicture.Width div 2) - (s.cx div 2);
y := (ToPicture.Height div 2) - (s.cy div 2);
tmpBitmap.Canvas.TextOut(x,y,FText);
ToPicture.Bitmap.Assign(tmpBitmap);

finally
tmpBitmap.Free;

end;
end;

➤ Listing 1

➤ Listing 2

12 The Delphi Magazine Issue 61

The program simply allows the
user to build a list of images and
move them into the appropriate
order (see Figure 1). When the user
clicks on Build Screensaver, it
opens up a file stream on a new
screensaver file. First we copy the
contents of the screensaver.dat file
created by our other project. Exe-
cutable files (or .scr files in this
case) run from beginning to end.
Isn’t that logical? Also, they have
no idea (nor do they care) how
long they are. This makes it conve-
nient for embedding data. All we
have to do is ensure the executable
code is placed first in our new file.

Next we cycle through the
images that the user selected for
the screensaver. For each image
that we write, we add the given file
position into our TSSFileImage-
Locations component. Also, notice
that in this maker program every
other image in the screensaver will
display the text entered in the Text
edit box. To accomplish this, we
alter the creation code to create a
TSSImage or TSSTextImage as appro-
priate for alternating images. This
whole text process as imple-
mented isn’t very useful other than
to show how each descendent
component automatically uses its
own Execute method when run. In a
more advanced Maker program,
you could store text values for
each individual picture: feel free to
make those changes yourself! To
accent the write process, you can
see the main create code pulled
out into Listing 4.

After writing all of the images, we
need to finish the file. First we write
out the TSSFileImageLocations
component. This of course is so
that we can get the images when it
comes time to read them. Then we

write two integer values
at a defined data length.
In our case each integer
can take up to 20 char-
acters. The first integer
value will be the loca-
tion in the file that the
image components
start. The second inte-
ger value is the location

in the file that the TSSFile-
ImageLocations component starts.
This gives us all the information
necessary to get at the data we just
embedded.

Getting At The Data
The reading process is very
similar. First you read the
TSSFileImageLocations component
to determine the count and
location of the images. Then you
start your timer. In each OnTimer
call, simply find the next image
location from the file and call
ReadComponent. When the compo-
nent is loaded, execute the
component.

By comparing the calls to
ReadComponent in our application,
you can see that there are two
different ways to read a
component from a stream:

sil := TSSFileImageLocations(
fs.ReadComponent(sil));

ssi := TSSImage(
fs.ReadComponent(nil));

In one case, as we do when we load
the TSSFileImageLocations, we
pass a variable to the ReadCompo-
nent method. The other call, like
we use when we load each
TSSImage, we pass a nil. When you
pass a variable to the method,
ReadComponent will simply make
that variable have the same
properties as the one being read.
No new instance of the component
is created, but rather the instance
of the component passed is
altered. On the other hand, by
passing nil, you are telling
ReadComponent to create the com-
ponent for you. This is especially
useful in the case of reading the
TSSImagebecause we do not know if
the image will in fact be a TSSImage
or rather one of it’s descendents
(such as TSSTextImage). By
allowing Delphi to create the
component as the correct class,
we can call the Executemethod and
allow Delphi to execute the correct
code for us, as shown in Listing 5.
This greatly simplifies quite a bit
by encompassing all code for exe-
cuting specified image types in
their own component.

TSSFileImageLocations = class(TComponent)
private
ListItems : TStringList;
function GetCommaList: string;
function GetItems(index: integer): Integer;
procedure SetCommaList(const Value: string);
procedure SetItems(index: integer; const Value: Integer);
function GetCount: integer;

public
constructor Create(AOwner : TComponent); override;
destructor Destroy; override;
property Items[index : integer] : Integer read GetItems write SetItems;
property Count : integer read GetCount;
function Add(Loc : integer) : integer;

published
property CommaList : string read GetCommaList write SetCommaList;

end;

for i := 0 to ListFiles.Items.Count -1 do begin
bShowText := not bShowText;
if bShowText and (eText.Text <> '') then begin
ssi := TSSTextImage.Create(nil);
TSSTextImage(ssi).Text := eText.Text;

end else begin
ssi := TSSImage.Create(nil);

end;
try
ssi.Picture.LoadFromFile(ListFiles.Items[i]);
ssi.Filename := ExtractFileName(ListFiles.Items[i]);
sil.Add(fsOut.Position);
fsOut.WriteComponent(ssi);

finally
ssi.Free;

end;
end;

➤ Figure 1

➤ Above: Listing 3 ➤ Below: Listing 4

September 2000 The Delphi Magazine 13

Futureimage types can be added or
current ones can be altered very
easily. You must remember that
when allowing Delphi to create the
instance of the component, you
must remember to free it when you
are finished. This is an easy bug to
miss and if you are not careful
could cause major problems. It is
not a good idea to have your
system crash due to lack of avail-
able memory every time your
screensaver starts.

When you pass a nil to
ReadComponent, Delphi must know
how to create the class for you. To

inform Delphi of the existence of
the class, you must call the
RegisterClass procedure in the
implementation section of your
unit. This procedure registers a
class of a persistent object so that
its class type can be retrieved from
streaming utilities such as
ReadComponent. Unfortunately, the
RegisterClass procedure is
declared in two places. It is both a
WinAPI call declared in win-
dows.pas and a streaming utility
declared in classes.pas. This can
sometimes cause conflict and
confusion, both for you and the

➤ Above: Listing 5 ➤ Below: Listing 6

initialization
classes.RegisterClass(TSSFileImageLocations);
classes.RegisterClass(TSSImage);
classes.RegisterClass(TSSTextImage);

fs := TFileStream.Create(Application.ExeName, fmOpenRead or fmShareDenyWrite);
try
fs.Position := sil.Items[ImageIndex];
ssi := TSSImage(fs.ReadComponent(nil));
try
TSSImage(ssi).Execute(Image1.Picture);

finally
ssi.Free;

end;
finally
fs.free;

end;

compiler. Usually this is caused
when your windows.pas file is
placed after your classes.pas file in
your uses clause. To avoid this
potential error, it’s a good idea to
preface RegisterClass with its unit
as shown in Listing 6.

Final Thoughts
You could use these techniques
anywhere a TStream object or
descendent is used. This provides
you an object oriented way to read
from files and execute functions
via streams. Once you get familiar
with these techniques, you will
inevitably see other areas in which
to use the benefits of component
streaming.

Jason Southwell is Director of
Internet Technologies for
ComponentControl.com and has
been developing in Delphi for 5
years, on both internet and
databse projects. Contact him at
jason@southwell.net

	TStream: The Basics
	The Task At Hand
	So Let’s Do It
	Embedding The Data
	Getting At The Data
	Final Thoughts

